วันศุกร์ที่ 28 สิงหาคม พ.ศ. 2552

DTS08 - 25/08/2552

สรุปเรื่อง Tree
ทรี (Tree) เป็นโครงสร้างข้อมูลที่ความสัมพันธ์ระหว่าง โหนดจะมีความสัมพันธ์ลดหลั่นกันเป็นลำดับชั้น เช่น แผนผังองค์ประกอบของหน่วยงานต่างๆ เป็นต้น
โหนดมีความสัมพันธ์กับโหนดในระดับต่ำลงมา หนึ่งระดับได้หลายๆ โหนด เรียกว่าโหนดว่า โหนดแม่ (Parent or Mother Node)
โหนดที่อยู่ต่ำกว่าโหนดแม่อยู่หนึ่งระดับเรียกว่า โหนดลูก (Child or Son Node)
โหนดที่อยู่ในระดับสูงสุดและไม่มีโหนดแม่เรียกว่า โหนดราก (Root Node)
โหนดที่มีโหนดแม่เป็นโหนดเดียวกันเรียกว่า โหนดพี่น้อง (Siblings)
โหนดที่ไมมีโหนดลูกเรียกว่า โหนดใบ (Leave Node)
เส้นเชื่อมแสดงความสัมพันธ์ระหว่างโหนดสองโหนดเรียกว่า กิ่ง (Branch)
นิยามของทรี
1.)นิยามทรีด้วยนิยามของกราฟ ทรี คือ กราฟที่ต่อเนื่องโดยไม่มีวงจรปิด (loop)
ในโครงสร้างการเขียนรูปแบบทรี เขียนได้ 4 แบบ คือ
1.แบบที่มีรากอยู่ด้านบน
2.แบบที่มีรากอยู่ด้านล่าง
3.แบบที่มีรากอยู่ด้านซ้าย
4.แบบที่มีรากอยู่ด้านขวา
2.)นิยามทรีด้วยรูปแบบรีเครอร์ซีฟ
ทรี ประกอบด้วยสมาชิกที่เรียกว่า โหนด โดยที่ถ้าว่างไม่มีโหนดใดๆ เรียกว่า นัลทรี (Null Tree) และถ้ามีโหนดหนึ่งเป็นโหนดราก ส่วนที่เหลือจะแบ่งเป็น ทรีย่อย (Sub Tree)
นิยามที่เกี่ยวข้องกับทรี
1.ฟอร์เรสต์ (Forest) หมายถึง กลุ่มของทรีที่เกิดจากการเอาโหนดรากของทรีออกหรือเซตของทรีที่แยกจากัน (Disjoint Trees)
2.ทรีที่มีแบบแผน (Ordered Tree) หมายถึง ทรีที่โหนดต่างๆ ในทรีนั้นมีความสัมพันธ์ที่แน่นอน เช่น ไปทางขวา ไปทางซ้าย เป็นต้น
3.ทรีคล้าย (Similar Tree) คือ ทรีที่มีโครงสร้างเหมือนกัน หรือทรีที่มีรูปร่างของทรีเหมือนกัน โดยไม่คำนึงถึงข้อมูลที่อยู่ในแต่ละโหนด
4.ทรีเหมือน (Equivalent Tree) คือ ทรีที่เหมือนกันโดยสมบูรณ์ โดยต้องเป็นทรีที่คล้ายกันและแต่ละโหนดในตำแหน่งเดียวกันมีข้อมูลเหมือนกัน
5.กำลัง (Degree) หมายถึง จำนวนทรีย่อยของโหนดนั้นๆ
6.ระดับของโหนด (Level of Node) คือ ระยะทางในแนวดิ่งของโหนดนั้นๆ
การแทนที่ทรีในหน่วยความจำหลัก
การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก การแทนที่ทรี แต่ละโหนดมีจำนวนลิงค์ฟิลด์ไม่เท่ากัน วิธีการแทนที่ง่ายที่สุด คือ ทำให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์ที่เท่ากัน โดย
1.โหนดแต่ละโหนดเก็บพอยเตอร์ชี้ไปยังโหนดลูกทุกโหนด
2.แทนทรีด้วยไบนารีทรี โดยกำหนดให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์สองลิงค์ฟิลด์
- ลิงค์ฟิลด์แรกเก็บที่อยู่ของโหนดลูกคนโต
- ลิงค์ฟิลด์ที่สองเก็บที่อยู่ของโหนดพี่น้องที่เป็นโหนดถัดไป โหนดใดไม่มีโหนดลูกหรือไม่มีโหนดพี่น้องให้ค่าพอยเตอร์ในลิงค์ฟิลด์มีค่าเป็น Null
โครงสร้างทรีที่แต่ละโหนดมีจำนวนโหนดลูดไม่เกินสองหรือแต่ละโหนดมีจำนวนทรีย่อยไม่เกินสองนี้ว่า ไบนารีทรี (Binary Tree)
ไบนารีทรีที่ทุกๆ โหนดมีทรีย่อยทางซ้ายและทรีย่อยทางขวา ยกเว้นโหนดใบ และโหนดใบทุกโหนดจะต้องอยู่ที่ระดับเดียวกัน
การแปลงทรีทั่วไปให้เป็นไบนารีทรี
1.ให้โหนดแม่ชี้ไปยังโหนดลูกคนโต แล้วลบความสัมพันธ์ระหว่างโหนดแม่และโหนดลูกอื่นๆ
2.ให้เชื่อมความสัมพันธ์ระหว่างโหนดพี่น้อง
3.จับให้ทรีย่อยทางขวาเอียงลงมา 45 องศา
การท่องไปในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุกๆ
โหนดในทรี
โหนดแม่ (แทนด้วย N)
ทรีย่อยทางซ้าย (แทนด้วย L)
ทรียอ่ยทางขวา (แทนด้วย R)
วิธีการท่องเข้าไปในทรี 6 วิธี คือ NLR LNR LRN NRL RNL และ RLN วิธีที่นิยมใช้ คือ การท่องจากซ้ายไปขวา 3 แบบแรก คือ NLR LNR และ LRN
ลักษณะการนิยามเป็นนิยามแบบ รีเคอร์ซีฟ
1.)การท่องไปแบบพรีออร์เดอร์ (Preorder Traversal)
ในวิธี NLR มีชั้นตอนการเดิน
1.เยือนโหนดราก
2.ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์
3.ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
2.)การท่องไปแบบอินออร์เดอร์ (Inorder Traversal)
ในวิธี LNR มีขั้นตอนการเดิน
1.ท่องไปในทรีย่อยทางซ้ายแบบอินออร์เดอร์
2.เยือนโหนดราก
3.ท่องไปในทรีย่อยทางขวาแบบอินออร์เดอร์
3.)การท่องไปแบบโพสออร์เดอร์ (Postorder Traversal)
ในวิธี LRN มีขั้นตอนการเดิน
1.ท่องไปในทรีย่อยทางซ้ายแบบโพสต์ออร์เดอร์
2.ท่องไปในทรีย่อยทางขวาแบบโพสต์ออร์เดอร์
3.เยือนโหนดราก

วันจันทร์ที่ 17 สิงหาคม พ.ศ. 2552

DTS07 - 11/08/2552

สรุปเรื่อง Queue
คิว (Queue) เป็นโครงสร้างข้อมูลแบบเชิงเส้นหรือลิเนียร์ลิสต์ การเพิ่มข้อมูลจะกระทำที่ปลายข้างหนึ่ง เรียกว่าส่วนท้ายหรือเรียร์ (rear) และการนำข้อมูลออกจะทำอีกข้างหนึ่ง เรียกว่า ส่วนหน้า หรือฟรอนต์ (front)
ลักษณะการทำงานของคิว
เป็นลักษณะของการเข้าก่อนออกก่อนหรือที่เรียกว่า FIFO (First In First Out)
การทำงานของคิว
- การใส่สมาชิกตัวใหม่ลงในคิว เรียกว่า Enqueue
- การนำสมาชิกออกจากคิว เรียกว่า Dequeue
- การนำข้อมูลที่อยู่ตอนต้นของคิวมาแสดง เรียกว่า Queue Front
- การนำข้อมูลที่อยู่ตอนท้ายของคิวมาแสดง เรียกว่า Queue Rear

การแทนที่ข้อมูลของคิวมี 2 วิธี
1.การแทนที่ข้อมูลของคิวแบบลิงค์ลิสต์ประกอบไปด้วย 2 ส่วน คือ
(1)Head Node ประกอบไปด้วย 3 ส่วน คือ พอยเตอร์ 2 ตัว คือ Front และ rear กับจำนวนสมาชิกในคิว
(2)Data Node ประกอบไปด้วยข้อมูลและพอยเตอร์ที่ชี้ไปยังข้อมูลถัดไป
2.การแทนที่ข้อมูลของคิวแบบอะเรย์
การนำข้อมูลเข้าจะต้องดูว่าคิวเต็มหรือว่างไหม ถ้านำข้อมูลเข้าไปจะทำให้เกิดความผิดพลาดขึ้น overflow
การนำข้อมูลออกจากคิว จะไม่สามารถทำได้ถ้านำข้อมูลออกแล้วทำให้คิวว่าง จะทำให้เกิดความผิดพลาดขึ้น underflow
กรณีคิวเป็นแบบวงกลม คิวจะเต็มก็ต่อเมื่อมีการเพิ่มข้อมูลเข้าไปในคิวเรื่อยๆ จะนกระทั้ง rear มีค่าน้อยกว่า front อยู่หนึ่งค่า คือ rear = front - 1

การดำเนินการเกี่ยวกับคิว
1.Create Queue การจัดสรรหน่วยความจำให้แก่ Head Node และให้ค่า pointer
2.Enqueue การเพิ่มข้อมูลเข้าไปในคิว
3.Dequeue การนำข้อมูลออกจากคิว
4.Queue Front การนำข้อมูลที่อยู่ส่วนต้นของคิวมาแสดง
5.Queue Rear การนำข้อมูลที่อยู่ส่วนท้ายของคิวมาแสดง
6.Empty Queue การตรวจสอบว่าคิวว่างหรือไม่
7.Full Queue เป็นการตรวจสอบว่าคิวเต็มหรือยัง
8.Queue Count การนับจำนวนสามาชิกที่อยู่ในคิว
9.Destroy Queue การลบข้อมูลทั้งหมดที่อยู่ในคิว

การประยุกต์ใช้คิว
คิวถูกประยุกต์ใช้มากในการจำลองระบบงานธุรกิจ เช่น การให้บริการลูกค้า คือ ต้องวิเคราะห์จำนวนลูกค้าในคิว เพื่อให้ลูกค้าเสียเวลาน้อยที่สุด ในด้านคอมพิวเตอร์ ได้นำคิวเข้ามาใช้ คือ ในระบบปฏิบัติการ ในเรื่องของคิวของงานที่เข้ามาทำงาน จัดให้งานที่เข้ามาได้ทำงานคามลำดับความสำคัญ

วันพุธที่ 5 สิงหาคม พ.ศ. 2552

DTS06 - 04/08/2552

สรุปเรื่อง Stack
สแตก (Stack) เป็นโครงสร้างข้อมูลที่ข้อมูลแบบลิเนียร์ลิสต์ ที่มีคุณสมบัติที่ว่า การเพิ่มหรือลบข้อมูลในสแตก จะกระทำที่ ปลายข้างเดียวกัน ซึ่งเรียกว่า Top ของสแตก (Top Of Stack) และ ลักษณะที่สำคัญของสแตก คือ ข้อมูลที่ใส่หลังสุดจะถูกนำออกมา จากสแตกเป็นลำดับแรกสุด เรียกคุณสมบัตินี้ว่า LIFO (Last In First Out)
การดำเนินงานพื้นฐานของสแตก
การทำงานต่าง ๆ ของสแตกจะกระทำที่ปลายข้างหนึ่งของ สแตกเท่านั้น ดังนั้นจะต้องมีตัวชี้ตำแหน่งข้อมูลบนสุดของสแตกด้วยการทำงานของสแตกจะประกอบด้วย
1.Push คือ การนำข้อมูลใส่ลงไปในสแตก เช่น สแตก s ต้องการใส่ข้อมูล i ในสแตก จะได้ push (s,i) คือ ใส่ข้อมูล i ลงไปที่ทอปของสแตก s ในการเพิ่มข้อมูลลงในสแตก จะต้องทำการตรวจสอบว่าสแตก เต็มหรือไม่ ถ้าไม่เต็มก็สามารถเพิ่มข้อมูลลงไปในสแตกได้ แล้วปรับตัวชี้ตำแหน่งให้ไปชี้ที่ตำแหน่งข้อมูลใหม่ ถ้าสแตกเต็ม (Stack Overflow) ก็จะไม่สามารถเพิ่มข้อมูลเข้าไปในสแตกได้อีก
2. Pop คือ การนำข้อมูลออกจากส่วนบนสุดของสแตก เช่น ต้องการนำข้อมูลออกจากสแตก s ไปไว้ที่ตัวแปร i จะได้ i = pop (s) การนำข้อมูลออกจากสแตก ถ้าสแตกมีสมาชิกเพียง 1 ตัว แล้วนำสมาชิกออกจากสแตก จะเกิดสภาวะสแตกว่าง (Stack Empty) คือ ไม่มีสมาชิกอยู่ในสแตกเลย แต่ถ้าไม่มีสมาชิกในสแตก แล้วทำการ pop สแตก จะทำให้ เกิดความผิดพลาดที่เรียกว่า Stack Underflow เพราะฉะนั้นก่อนนำข้อมูลออกจากสแตกจะต้องตรวจสอบ ก่อนว่าสแตกว่างหรือเปล่า จึงจะนำข้อมูลออกจากสแตกได้และ ปรับตัวชี้ตำแหน่งให้ไปชี้ตำแหน่งของข้อมูลที่ต่อจากข้อมูลที่ถูกนำ ออกไป
3. Stack Top เป็นการคัดลอกข้อมูลที่อยู่บนสุดของสแตก แต่ไม่ได้นำเอาข้อมูลนั้นออกจากสแตกการแทนที่ข้อมูลของสแตก

การแทนที่ข้อมูลของสแตกสามารถทำได้ 2 วิธี คือ
1. การแทนที่ข้อมูลของสแตกแบบลิงค์ลิสต์จะประกอบไปด้วย 2 ส่วน คือ ส่วนของ Head Node จะประกอบไปด้วย 2 ส่วนคือ top pointer และจำนวนสมาชิกในสแตก และ Data Node จะประกอบไปด้วยข้อมูล (Data) และพอยเตอร์ ที่ชี้ไปยังข้อมูลตัวถัดไป
การดำเนินการเกี่ยวกับสแตก ได้แก่
1. Create Stack จัดสรรหน่วยความจำให้แก่ Head Node และส่งค่าตำแหน่งที่ชี้ไปยัง Head ของสแตกกลับมา
2. Push Stack การเพิ่มข้อมูลลงไปในสแตก
3. Pop Stack การนำข้อมูลบนสุดออกจากสแตก
4. Stack Top เป็นการคัดลอกข้อมูลที่อยู่บนสุดของสแตก โดยไม่มีการลบข้อมูลออกจากสแตก
5.Empty Stack เป็นการตรวจสอบการว่างของสแตก เพื่อไม่ให้เกิดความผิดพลาดในการนำข้อมูลออกจากสแตกที่เรียกว่า Stack Underflow
6. Full Stack เป็นการตรวจสอบว่าสแตกเต็มหรือไม่ เพื่อไม่ให้เกิดความผิดพลาดในการนำข้อมูลเข้าสแตกที่เรียกว่า Stack Overflow
7. Stack Count เป็นการนับจำนวนสมาชิกในสแตก
8. Destroy Stack เป็นการลบข้อมูลทั้งหมดที่อยู่ในสแตก

2. การแทนที่ข้อมูลของสแตกแบบอะเรย์การดำเนินการเกี่ยวกับสแตก ได้แก่
1. Create Stack
2. Push Stack
3. Pop Stack
4. Stack Top
5. Empty Stack
6. Full Stack
7. Stack Count
8. Destroy Stack

การคำนวณนิพจน์ทางคณิตศาสตร์
ในการเขียนนิพจน์ทางคณิตศาสตร์เพื่อการคำนวณ จะต้องคำนึงถึงลำดับความสำคัญของเครื่องหมาสำหรับการคำนวณด้วย โดยทั่วไปนิพจน์ทางคณิตศาสตร์สามารถเขียนได้ 3 รูปแบบ คือ
1. นิพจน์ Infix นิพจน์รูปแบบนี้ operatorจะอยู่ตรงกลางระหว่างตัวถูกดำเนินการ 2 ตัว
2. นิพจน์ Postfix นิพจน์รูปแบบนี้ จะต้องเขียนตัวถูกดำเนินการตัวที่ 1 และ 2 ก่อน แล้วตามด้วย operator 3. นิพจน์ Prefix นิพจน์รูปแบบนี้ จะต้องเขียน operator ก่อนแล้วตามด้วยตัวถูกดำเนินการตัวที่ 1 และ 2

ขั้นตอนการแปลงจากนิพจน์ Infix เป็นนิพจน์ Postfix
1. อ่านอักขระในนิพจน์ Infix เข้ามาทีละตัว
2. ถ้าเป็นตัวถูกดำเนินการจะถูกย้ายไปเป็นตัวอักษรในนิพจน์ Postfix
3. ถ้าเป็นตัวดำเนินการ จะนำค่าลำดับความสำคัญของตัว ดำเนินการที่อ่านเข้ามาเทียบกับค่าลำดับความสำคัญของตัวดำเนินการที่อยู่บนสุดของสแตก
- ถ้ามีความสำคัญมากกว่า จะถูก push ลงในสแตก
- ถ้ามีความสำคัญน้อยกว่าหรือเท่ากัน จะต้อง pop ตัวดำเนินการที่อยู่ในสแตกขณะนั้นไปเรียงต่อกับตัวอักษรในนิพจน์ Postfix
4. ตัวดำเนินการที่เป็นวงเล็บปิด “)” จะไม่ push ลงในสแตกแต่มีผลให้ตัวดำเนินการอื่น ๆ ถูก pop ออกจากสแตกนำไป เรียงต่อกันในนิพจน์ Postfix จนกว่าจะเจอ “(” จะ pop วงเล็บเปิดออกจากสแตกแต่ไม่นำไปเรียงต่อ
5. เมื่อทำการอ่านตัวอักษรในนิพจน์ Infix หมดแล้ว ให้ทำการ Pop ตัวดำเนินการทุกตัวในสแตกนำมาเรียงต่อในนิพจน์Postfix

วันเสาร์ที่ 1 สิงหาคม พ.ศ. 2552

DTS05 - 28/07/2552

เรื่อง Linked List
ลิงค์ลิสต์ (Linked List) เป็นวิธีการเก็บข้อมูลอย่างต่อเนื่องของอิลิเมนต์ต่างๆ โดยมีพอยเตอร์เป็นตัวเชื่อมต่อ แต่ละอิลิเมนท์ เรียกว่าโนด (Node) ซึ่งในแต่ละโนดประกอบไปด้วย 2 ส่วน คือ
1. Data จะเก็บข้อมูลของอิลิเมนท์
2. Link Field ทำหน้าที่เก็บตำแหน่งของโนดต่อไปในลิสต์ในส่วนของ data จะเป็นรายการเดี่ยวหรือเรคคอร์ดก็ได้ ส่วนของ link เป็นส่วนที่เก็บตำแหน่งของโหนดถัดไป ถ้าในโหนดสุดท้ายจะเก็บค่า Null (ไม่มีค่าใดๆ ไม่มีการเชื่อมโยง) เป็นตัวบอกการสิ้นสุด

โครงสร้างข้อมูลแบบลิงค์ลิสต์
โครงสร้างข้อมูลแบบลิงค์ลิสต์แบ่งเป็น 2 ส่วน คือ
1. Head Structure ประกอบไปด้วย 3 ส่วน ได้แก่ จำนวนโหนดในลิสต์ (Count) พอยเตอร์ที่ชี้ไปยังโหนดที่เข้าถึง (Pos) และพอยเตอร์ที่ชี้ไปยังโหนดข้อมูลแรกของลิสต์ (Head)
2. Data Node Structure ประกอบไปด้วยข้อมูล (Data) และพอยเตอร์ที่ชี้ไปยังข้อมูลถัดไป

กระบวนงานและฟังก์ชั่นที่ใช้ดำเนินงานพื้นฐาน
1. กระบวนงาน Create Listหน้าที่ สร้างลิสต์ว่าง ผลลัพธ์ ลิสต์ว่าง
2. กระบวนงาน Insert Node หน้าที่เพิ่มข้อมูลลงไปในลิสต์บริเวณตำแหน่งที่ต้องกรข้อมูลนำเข้า ลิสต์ ข้อมูลและตำแหน่ง ผลลัพธ์ สิลต์ที่มีการเปลี่ยนแปลง
3. กระบวนงาน Delete Node หน้าที่ ลบสมาชิกในลิสต์บริเวณตำแหน่งที่ต้องการข้อมูลนำเข้า ข้อมูลและตำแหน่ง ผลลัพธ์ ลิสต์ที่มีการเปลี่ยนแปลง
4. กระบวนงาน Search list หน้าที่ ค้นหาข้อมูลในลิสต์ที่ต้องการข้อมูลนำเข้าลิสต์ผลลัพธ์ ค่าจริงถ้าพบข้อมูล ค่าเท็จถ้าไม่พบข้อมูล
5. กระบวนงาน Traverse หน้าที่ ท่องไปในลิสต์เพื่อเข้าถึงและประมวลผลข้อมูลนำเข้าลิสต์ผลลัพธ์ ขึ้นกับการประมวลผล เช่น เปลี่ยนแปลงค่าใน node, รวมฟิลด์ในสิสต์, คำนวณค่าเฉลี่ยนของฟิลด์ เป็นต้น
6. กระบวนงาน Retrieve Node หน้าที่ หาตำแหน่งข้อมูลจากลิสต์ข้อมูลนำเข้าลิสต์ผลลัพธ์ ตำแหน่งข้อมูลที่อยู่ในลิสต์
7. ฟังก์ชั่น EmptyList หน้าที่ ทดสอบว่าลิสต์ว่าง ข้อมูลนำเข้าลิสต์ผลลัพธ์ เป็นจริง ถ้าลิสต์ว่าง เป็นเท็จ ถ้าลิสต์ไม่ว่าง
8. ฟังก์ชั่น FullList หน้าที่ ทดสอบว่าลิสต์เต็มหรือไม่ข้อมูลนำเข้าลิสต์ผลลัพธ์ เป็นจริง ถ้าหน่วยความจำเต็ม เป็นเท็จ ถ้าสามรถมีโหนดอื่น
9. ฟังก์ชั่น list count หน้าที่ นับจำนวนข้อมูลที่อยู่ในลิสต์ ข้อมูลนำเข้าลิสต์ผลลัพธ์ จำนวนข้อมูลที่อยู่ในลิสต์
10. กระบวนงาน destroy list หน้าที่ ทำลายลิสต์ข้อมูลนำเข้า ลิสต์ ผลลัพธ์ ไม่มีลิสต์

Linked List แบบซับซ้อน
1. Circular Linked List เป็นลิงค์ลิสต์ที่สมาชิกตัวสุดท้ายมีตัวชี้ (list) ชี้ไปที่สมาชิกตัวแรกของลิงค์ลิสต์ จะมีการทำงานไปในทิศทางเดียวเท่านั้น คือ เป็นแบบวงกลม
2. Double Linked List เป็นลิงค์ลิสต์ที่มีทิศทางการทำแบบ 2 ทิศทาง ในลิงค์ลิสต์แบบ 2 ทิศทาง ส่วนข้อมูลจะมีตัวชี้ไปที่ข้อมูลก่อนหน้า (backward pointer) และตัวชี้ข้อมูลถัดไป (forward pointer)